\(\overrightarrow{P_{1}P'_{1}}=\begin{pmatrix} x_S - x_F \\ y_S - y_F\\ \end{pmatrix}\)
\(\overrightarrow{P_{1}P'_{1}}=\begin{pmatrix} 8 - 4\\ 4-2\\ \end{pmatrix}\)
\(\overrightarrow{P_{1}P'_{1}}=\begin{pmatrix} 4 \\ 2\\ \end{pmatrix}\)

\(\overrightarrow{P_{2}P'_{2}}=\begin{pmatrix} 3-(-4)\\ 5-(-1)\\ \end{pmatrix}\)
\(\overrightarrow{P_{2}P'_{2}}=\begin{pmatrix} 7 \\ 6\\ \end{pmatrix}\)

\(\overrightarrow{P_{3}P'_{3}}=\begin{pmatrix} -1-3\\ 2,5-2,5\\ \end{pmatrix}\)
\(\overrightarrow{P_{3}P'_{3}}=\begin{pmatrix} -4 \\ 0\\ \end{pmatrix}\)

\(\overrightarrow{P_{4}P'_{4}}=\begin{pmatrix} -1-(-0,5)\\ -2-6\\ \end{pmatrix}\)
\(\overrightarrow{P_{4}P'_{4}}=\begin{pmatrix} -0,5 \\ -8\\ \end{pmatrix}\)

\(\overrightarrow{P_{5}P'_{5}}=\begin{pmatrix} -4-0\\-2-(-2)\\ \end{pmatrix}\)
\(\overrightarrow{P_{5}P'_{5}}=\begin{pmatrix} -4 \\ 0\\ \end{pmatrix}\)

\(\overrightarrow{P_{6}P'_{6}}=\begin{pmatrix} 5,5-6\\ -7-(-1)\\ \end{pmatrix}\)
\(\overrightarrow{P_{6}P'_{6}}=\begin{pmatrix} -0,5 \\ -6\\ \end{pmatrix}\)

\(\overrightarrow{P_{7}P'_{7}}=\begin{pmatrix} -1-(-5)\\ -1-(-3)\\ \end{pmatrix}\)
\(\overrightarrow{P_{7}P'_{7}}=\begin{pmatrix} 4 \\ 2\\ \end{pmatrix}\)
Zuletzt geändert: Samstag, 13. Februar 2016, 12:48